In this example we are going to teach an OpenAI model, how to write MindsDB AI SQL queriesAll OpenAI models belong to the group of Large Language Models (LLMs). By definition, these are pre-trained on large amounts of data. However, it is possible to fine-tune these models with a task-specific dataset for a defined use case.
OpenAI supports fine-tuning of some of its models listed here. And with MindsDB, you can easily fine-tune an OpenAI model making it more applicable to your specific use case.
Let’s create a model to answer questions about MindsDB’s custom SQL syntax.First, create an OpenAI engine, passing your OpenAI API key:
CREATE MODEL openai_davinciPREDICT completionUSING engine = 'openai_engine', model_name = 'davinci-002', prompt_template = 'Return a valid SQL string for the following question about MindsDB in-database machine learning: {{prompt}}';
You can check model status with this command:
Copy
Ask AI
DESCRIBE openai_davinci;
Once the status is complete, we can query for predictions:
Copy
Ask AI
SELECT prompt, completionFROM openai_davinci as mWHERE prompt = 'What is the SQL syntax to join input data with predictions from a MindsDB machine learning model?'USING max_tokens=400;
On execution, we get:
Copy
Ask AI
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+| prompt | completion |+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+| What is the SQL syntax to join input data with predictions from a MindsDB machine learning model? | The SQL syntax is: SELECT * FROM input_data INNER JOIN predictions ON input_data.id = predictions.id |+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
If you followed one of the MindsDB tutorials before, you’ll see that the syntax provided by the model is not exactly as expected.Now, we’ll fine-tune our model using a table that stores details about MindsDB’s custom SQL syntax.
Upload this data file to MindsDB and use it to finetune the model.
This is how you can fine-tune an OpenAI model:
Copy
Ask AI
FINETUNE openai_davinciFROM files (SELECT prompt, completion FROM openai_learninghub_ft);
The FINETUNE command creates a new version of the openai_davinci model. You can query all available versions as below:
Copy
Ask AI
SELECT *FROM models_versionsWHERE name = 'openai_davinci';
While the model is being generated and trained, it is not active. The model becomes active only after it completes generating and training.
Once the new version status is complete and active, we can query the model again, expecting a more accurate output.
Copy
Ask AI
SELECT prompt, completionFROM openai_davinci as mWHERE prompt = 'What is the SQL syntax to join input data with predictions from a MindsDB machine learning model?'USING max_tokens=400;
On execution, we get:
Copy
Ask AI
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+| prompt | completion |+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+| What is the SQL syntax to join input data with predictions from a MindsDB machine learning model? | SELECT * FROM mindsdb.models.my_model JOIN mindsdb.input_data_name; |+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+